OPTIMISED IUMINAIRE PROTECTION

LUMINAIRE PROTECTION AND POWER ADJUSTMENT

This chapter presents inrush current limiters, electronic components to protect luminaires against mains surges, power reduction products and components with which the output current of LED drivers can be adjusted.

Luminaire Protection Device

For electronic devices

When electronic components form part of lighting systems, it is often necessary to protect such components against power-supply interruptions and electric overloads (power surges).

SP 230/10 K

Suitable for luminaires of protection class II
Type 3 product
With integrated thermal fuse
Dimensions (LxWxH): $32 \times 22 \times 13 \mathrm{~mm}$
Weight: 20 g
Connecting: solid wire, length: 50 mm

Ref. No.: 147230

SPC 230/10 K

If the protective luminaire component overloads, the connected lighting circuit will be interrupted. This cut-out function makes it easier to detect the end of life of the protective component, facilitates quick replacement by maintenance staff and provides reliable protection for lighting components. Suitable for luminaires of protection class II
Type 3 product
Dimensions (LxWxH): 53×28×27 mm
Weight: 50 g
Screw terminals: 0.5-1.5 mm²

Ref. No.: 142736

SP 3/230/10 K

Suitable for luminaires of protection class I
Type 3 product
Dimensions ($\varnothing \times H): \varnothing 36 \times 75 \mathrm{~mm}$
Weight: 60 g
Screw terminals: 0.75-4 mm²

Ref. No.: 147233

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current A	Max. impulse voltage Uoc (V)	Discharge current*$\text { (8/20 } \mu \mathrm{s})$		Protection level at discharge current of 1000 A	Safety max. A	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
SP 230/10 K	147230	220-240	-	10000	5000	10000	$\leq 850 \mathrm{~V}$	25	80	-30	-
SPC 230/10 K	142736	220-240	16	10000	5000	10000	$\leq 850 \mathrm{~V}$	16	80	-30	M8×10
SP 3/230/10 K	147233	100-277	-	10000	5000	10000	$\leq 1000 \mathrm{~V}$	25	80	-30	M8×10

[^0]
Luminaire Protection Device - Type 3

For electronic devices

These protective components are fitted with an
LED indicator. Once the end of the component's life
has been reached, the green LED goes out and
the protective component has to be replaced.

SP230/10 K/HS/i

The green LED light will go out if the protective function fails
Dimensions (LxWxH): 90x17.2×63 mm
Weight: 45 g
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Fixation on DIN installation rail
Ref. No.: 147240

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current (A)	Protection level at discharge current of 1000 A	Max. impulse voltage Uoc (V)	Discharge $\text { (8/20 } \mu \mathrm{s})$ $\operatorname{IN}(\mathrm{A})$	current ${ }^{*}$ $\mid I_{\text {max. }}(\mathrm{A})$	Safety max. A	Max. permitted casing temperature ${ }^{\circ} \mathrm{C}$	Fixation
SP230/10 K/HS/i	147240	220-240	16	$\leq 1000 \mathrm{~V}$	10000	5000	10000	16	-35 to 80	M8×10

[^1]
Luminaire Protection Device - Type 3

For electronic devices

These protective components are fitted with internal thermal fuses. The protective component will be disconnect from the mains at the end of the internal varistors' life or if there is a permanently overoltage.
In that case the green LED goes out and the protective component has to be replaced.

SP3/230/10K/i

Suitable for luminaires of protection class I
Push-in terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Degree of protection: IP20
DEKRA approved acc. to EN 61643-11
Weight: 67/72 g
Ref. No.: 142743 without fixing threaded bolt
Ref. No.: 142744 with fixing threaded bolt

KEMA

Pawered by D DEKRA

SPC3/230/20K/i

Suitable for luminaires of protection class |
Push-in terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Degree of protection: IP20
Comply with the requirements of EN 61643-11
Weight: 55/60 g
Ref. No.: 142752 without fixing threaded bolt
Ref. No.: 142751 with fixing threaded bolt

AC-system: TT-TN-IT
Temporary overvoltage
(TOV)-LV: 443 V AC (5 sec.$) / 443 \mathrm{~V}(120 \mathrm{~min}$.
(TOV)-MV/HV: 1200 V AC (200 msec.)
$I_{\text {sccr: }}: 1000 \mathrm{~A}$
With integrated thermal fuse
Dimensions (LxWxH): $79 \times 45 \times 35 \mathrm{~mm}$

SP3 230/10K/i

SPC3/230/20K/i

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current (A)	Protection L-N (V)	level L-PE (V)	N-PE (V)	Ipe HA	Max. impulse voltage Uoc (V)	Discharge current*$\text { (} 8 / 20 \mu \mathrm{~s})$		Safety $\max . A$	Max. permitted casing temp. ${ }^{\circ} \mathrm{C}$	Fixing threaded bolt
SP3/230/10 K/i	142743	100-277	16	<1500	< 1800	< 1800	1	10000	5000	10000	16	-35 to 80	without
SP3/230/10 K/i	142744	100-277	16	< 1500	< 1800	< 1800	1	10000	5000	10000	16	-35 to 80	with
SPC3/230/20 K/i	142751	100-277	16	< 1800	< 2200	-	1	20000	10000	20000	16	-35 to 80	with
SPC3/230/20 K/i	142752	100-277	16	< 1800	< 2200	-	1	20000	10000	20000	16	-35 to 80	without

[^2]
Luminaire Protection Device - Type 3

For electronic devices

These protective components are fitted with an LED indicator. Once the end of the component's life has been reached, the green LED goes out and the protective component has to be replaced.

If the protective luminaire component overloads, the connected lighting circuit will be interrupted. This cut-out function makes it easier to detect the end of life of the protective component, facilitates quick replacement by maintenance staff and provides reliable protection for lighting components.

AC-system: TT-TN-IT

Temporary overvoltage
(TOV)-LV: 443 V AC (5 sec.) / 443 V (120 min.) (TOV)-MV/HV: 1200 V AC (200 msec.)

Isccr: 4500 A

With integrated thermal fuse DEKRA approved acc. to EN 61643-11
Dimensions (LxWxH): 76x34×27 mm
Weight: 100 g

SPC 230/10 K/i

Suitable for luminaires of protection class II
Screw terminals: 0.75-2.5 mm²
Degree of protection: IP20
Ref. No.: 142737

SPC 3/230/10 K/i

Suitable for luminaires of protection class I
Screw terminals: 0.75-2.5 mm²
Lead ground terminal: stranded conductors, $2.5 \mathrm{~mm}^{2}$,
silicone insulation, length: 150 mm
Degree of protection: IP20

Ref. No.: 142738

Earthing wire with M4 ring-tongue
Ref. No.: 142742

SPC 3/230/10 K/i-IP66

4 leads: stranded conductors, $2.5 \mathrm{~mm}^{2}$, silicone insulation, length: 150 mm
Degree of protection: IP66
Ref. No.: 142748

Type	Ref. No.	Voltage $\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \mathrm{~V} \pm 10 \% \end{aligned}$	Max. load current (A)	Protection L-N (V)	level L-PE (V)	lpe нA	Max. impulse voltage Uoc (V)	$\begin{aligned} & \text { Discharge current* } \\ & (8 / 20 \mu \mathrm{~s}) \end{aligned}$		Safety max. A	Max. permitted casing temp. ${ }^{\circ} \mathrm{C}$	Fixation
SPC 230/10 K/i	142737	100-277	16	< 1500	-	-	10000	5000	10000	16	-35 to 80	M8x10
SPC 3/230/10 K/i	142738	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10
SPC 3/230/10 K/i	142742	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10
SPC 3/230/10 K/i-PP66	142748	100-277	16	< 1500	< 1800	1	10000	5000	10000	16	-35 to 80	M8×10

[^3]
Inrush Current Limiter ESB

Limits capacitive inrush currents of electronic ballasts and LED drivers and converters

Due to their capacitive nature, electronic operating devices generate high inrush currents. By temporarily activating a limiting resistor, the inrush current is reduced to an uncritical value (see graph below).

Several electronic devices can be connected downstream under consideration of the maximum permissible continuous current of the inrush current limiter. As a result, the load per circuit breaker (MCB) can be increased by at least 2.5 fold.

The ESB thus prevents any automatic circuit breakers from being triggered or any damage from being caused to upstream relay contacts.
Switching cycles: > 10,000

ESB-6K

Casing: PC
Dimensions (LxWxH): $55 \times 28 \times 27 \mathrm{~mm}$
Weight: 61 g
Screw terminals: $0.5-1.5 \mathrm{~mm}^{2}$
VDE approved
Ref. No.: 149820
Ref. No.: 149822

Type	Ref. No.	Nominal voltage $50-60 \mathrm{~Hz}$ $\mathrm{~V} \pm 10 \%$	Power consumption W	Max. direct current A	limiting resistor Ω	Period of limitation ms	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
ESB-6K	$\mathbf{1 4 9 8 2 0}$	$220-240$	0.25	6	20	approx. 18	80	-30	$\mathrm{M} 8 \times 10$
ESB-16HS	$\mathbf{1 4 9 8 2 1}$	$220-240$	0.6	16	11.2	approx. 18	80	-30	DIN-rail
ESB-6K_1A	$\mathbf{1 4 9 8 2 2}$	$220-240$	0.25	6	440	approx. 160	80	-30	$M 8 \times 10$

ESB-16HS

Casing: PC
Dimensions (LxW×H): 90×18×58 mm
Weight: 75 g
Screw terminals: $0.5-2.5 \mathrm{~mm}^{2}$
Ref. No.: 149821

Example using a 150 W LED driver

Brown: with ICL (ESB)
Blue: without ICL (ESB)
$1 V=1 \mathrm{~A}$

The values contained in this data sheet can change due to technical innovations. Any such changes will be made without separate notification.

Automatical Power Switch for LED Drivers - PR 12 K LC

The PR 12 K LC can be used for power switching of LED drivers with LST control input.
A control phase is not needed.
Once it's connected to the mains supply voltage
the power switch will switch automatically.
The power switch complies with the specification
of DIN EN 61347 and is suitable for the application
in luminaires of protection class I and II.

PR 12 K LC

Casing: PC
Dimensions (LxWxH): 76×34×30 mm
Weight : 100 g
Screw terminals: 0.75-2.5 mm²

Ref. No.: 142170

Type	Ref. No.	Nominal voltage/ frequency $V \pm 10 \%$	Max. switching capacity (VA)	Max. contact current (A)$\lambda=0.5 \mid \lambda=1$		Internal loss W	Inherent heating K	Switching-time	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right.$)	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
PR 12 KLC	142170	$220-230 \mathrm{~V} / 50 \mathrm{~Hz}$	3000	8	12	< 1	< 12	selectable	80	-30	M8x 10
		$220 \mathrm{~V} / 60 \mathrm{~Hz}$ *									

* $120-240 \mathrm{~V} \pm 10 \%$ available on request

Programmable Power Switch for LED Drivers - PR 12 KD

The PR 12 KD can be used for power switching of LED drivers with LST control input.
A control phase is not needed.
The constant switching-time is selectable.
The left side of the rotary switch is used for reset to full power after eleven hours; the right side is for continuous power reduction after programmed time has been reached.

The power switch complies with the specification of DIN EN 61347 and is suitable for the application in luminaires of protection class I and II.

PR 12 KD

Casing: PC
Dimensions (LxWxH): $76 \times 34 \times 30 \mathrm{~mm}$
Weight: 100 g
Screw terminals: 0.75-2.5 mm²

Ref. No.: 142150

Wiring diagram

For example with VS LED drivers ECXd 700.023 (Ref. No. 186509)

Type	Ref. No.	Nominal voltage/ frequency $V \pm 10 \%$	Max. switching capacity (VA)	Max. contact current (A)$\lambda=0.5 \lambda=1$		Internal loss W	Inherent heating K	Switching-time*	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	Fixation
$\overline{\text { PR } 12 \mathrm{KD}}$	142150	$220-230 \mathrm{~V} / 50 \mathrm{~Hz}$	3000	8	12	< 1	< 12	selectable	80	-30	M8×10
		$220 \mathrm{~V} / 60 \mathrm{~Hz}$ **									

[^4]** $120-240 \vee \pm 10 \%$ available on request

Switch Units for Electronic Operating Devices with 1-10 V Interface

Vossloh-Schwabe's switch units are designed to enable one-step power reduction of lamps (FL, CFL, LED, HS, HI and C-HII with the help of the respective electronic ballast or converter.

To this end, the switch units utilises the $1-10 \mathrm{~V}$ interface of the control gear unit. The switch unit is mainly intended for outdoor luminaires in systems with or without a control phase.

Dimensions (LxWxH): $56 \times 28 \times 27 \mathrm{~mm}$
Casing: PC
Screw terminals: $0.75-2.5 \mathrm{~mm}^{2}$
Max. permissible casing temperature $t_{c}: 80^{\circ} \mathrm{C}$
Min. permissible ambient temperature $t_{a}:-30^{\circ} \mathrm{C}$ Fastening: plastic male nipple with pre-assembled washer and nut

Power reduction SU 1-10 V K for lighting systems featuring an Lst control phase
The switch unit employs a positive switching to reduce power, i.e. power is reduced when the control phase is switched off (LST $=0 \mathrm{~V})$.
The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed at the moment that power reduction is effected.

Power reduction PR 1-10 V K LC for

 lighting systems without a control phase This switch unit can be used to effect power reduction in lighting systems that do not feature a control phase. The $1-10 \mathrm{~V}$ interface is addressed on the basis of the fundamental operating principle used by Vossloh-Schwabe's PR 12 K LC power switch (details of which can be made available on request). This power switch is capable of determining the starting time of reduced-power operation over the measured operating time of a lighting system. As a result, it is no longer necessary to spend valuable time modifying the power-reduction unit to suit the continually changing day-night cycle; changing the clocks in line with daylight saving measures in the summer and winter is equally unnecessary. The $1-10 \mathrm{~V}$ interface of the electronic ballast is addressed as soon as the system is switched to reduced power.
Circuit diagram SU 1-10 V K

Circuit diagram PR 1-10 V K LC

Resistor Network for LED Drivers

This resistor network is used to adjust the output currents of LED drivers. 255 different resistance values can be adjusted in 10-Ohm steps within a range from 0 to 2550 Ohm by connecting the SU $1-10$ V K and PR 1-10 V LC power switches. As an example, this makes it possible to even out differences in luminous flux common to LED luminaires.

The component is designed for use in protection class II luminaires.

R10-1280

Casing: PC
Dimensions (LxWxH): $32 \times 25 \times 15 \mathrm{~mm}$
Weight: 20 g
Connection leads, solid: $0.5 \mathrm{~mm}^{2}$
Lead length: 150 mm
Ref. No.: 149800

R6,25K-70K

Resistor network for LEDset interface
Casing: PC
Dimensions (LxWxH): $32 \times 25 \times 15 \mathrm{~mm}$
Weight: 20 g
Connection leads, solid: $0.5 \mathrm{~mm}^{2}$
Lead length: 150 mm
Ref. No.: 149802

Type	Ref. No.	Number of dip switch $V, 50 / 60 ~ H z$	Max. internal loss of resistors W	Max. voltage at resistors V	Max. permitted casing temperature $\left({ }^{\circ} \mathrm{C}\right)$	Min. permitted ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
R10-1280	$\mathbf{1 4 9 8 0 0}$	8	0.25	200	80	-30
R6,25K-70K	$\mathbf{1 4 9 8 0 2}$	8	0.25	200	80	-30

[^0]: * Discharge current: at 5000 A min. 10 strikes; at 10,000 A min. 1 strike

[^1]: * Discharge current: at 5000 A min. 10 strikes; at 10,000 A min. 1 strike

[^2]: * Discharge current: at $I \mathrm{~N}$ min. 10 strikes; at $I_{\text {max. }} 1$ strike

[^3]: * Discharge current: at 5000 A min. 10 strikes; at 10,000 A min. 1 strike

[^4]: * Switching-time selectable: $3|3.5| 4|4.5| 5|5.5| 6$ hrs. at 50 Hz

